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Abstract

Scalar ®elds satisfying the stationary advection±di�usion equation with no source or sink terms cannot have
strong local extrema. This can be deduced from the elliptical nature of the equation. Here, however, an alternative,
original and more physically motivated proof is o�ered. It highlights the positive role of di�usion in preventing

extrema and the inability of advection to create them. Application is made to the theory of energy transfer by
species interdi�usion and some anomalous numerical solutions from the literature are identi®ed. 7 2001 Elsevier
Science Ltd. All rights reserved.

1. Introduction

This note concerns stationary solutions of the advec-
tion±di�usion equation without source or sink terms;

for example, the steady-state temperature ®eld in a
pure ¯uid or ideal mixture when viscous dissipation,
radiation, work against external forces, the Dufour

e�ect, etc. may be neglected. Multiple advecting ¯ows,
which occur in multicomponent mixtures, are explicitly
included.

The fact that no such scalar ®eld can possess a
strong relative maximum or minimum at an interior
point of its domain of existence follows from the posi-

tive role of di�usion in eliminating them and the in-
ability of advection to create them. This is re¯ected
mathematically in the positive tensorial character of
the di�usivity and the elliptic nature of the equation.

The result is easily deduced from Hopf's Maximum
Principle. Here, however, an alternative original and
quite di�erent proof is presented which, by avoiding

the arti®ce of a comparison function and using vector-

ial and tensorial concepts rather than a general calcu-
lus of several variables, is, it is hoped, more conducive
to physical intuition. The use of vectors also frees the
result from any particular coordinate system. Since it

adds little extra complexity, an anisotropic di�usivity
is considered; A � rs being replaced by Ars in the
special case of isotropy.

2. De®nitions

A divergence-free vector ®eld, u, satis®es r � u � 0:
A positive tensor, A, is one for which u � �A � u�r0

for all vectors u, with equality implying u � 0:

If the N scalar functions h�i �, divergence-free vector
®elds v�i � and the positive tensor ®eld A are all con-

tinuously di�erentiable then

r �
"
ÿ A � rs�

XN
i�1

h�i��s�v�i�
#
� 0 �1�

is the steady-state advection±di�usion equation for the

scalar ®eld, s.
A regular solution of a partial di�erential equation is
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one for which all the partial derivatives occurring in
the equation exist and are continuous [1].

A strong local maximum of a scalar ®eld is a point
with a neighborhood in which the value of the ®eld at
every point is less than that at the maximum. Minima

are de®ned analogously.

3. Theorem

No regular solution of the steady-state advection±dif-

fusion equation possesses a strong local extremum.

4. Proof

The idea for this proof, suggested by Prof. Bob
Street (1999, personal communication), is to recast the
equation in quasilinear elliptic form, for which the
result is known.

On carrying out the divergence,

A:r�rs� � �r � A� � rsÿ
XN
i�1

v�i� � h 0�i��s�rs � 0 �2�

or

A:r�rs� � v � rs � 0 �3�
where

v � r � Aÿ
XN
i�1

h 0�i��s�v�i� �4�

and h 0�i ��s� is the derivative of h�i ��s�:
In Cartesian tensor notation with the summation

convention in force, this is

Ajks,jk � vjs,j � 0, �5�

which is of the form for which Hopf's Maximum Prin-
ciple is shown to hold in treatises on partial di�erential
equations [2]. The key here is that A is positive.

5. Alternative proof

The new proof is by contradiction: assume that
there does exist an interior relative extremum. For de®-

niteness, and without loss of generality, take this to be
a minimum.
Construct a family of rays originating at the mini-

mum and terminating when they encounter either:

(i) a boundary point of the domain; or
(ii) a stationary point, with respect to the ray, of s;

i.e. Ãr � rs � 0, where r is the unit radial vector from
the minimum.

Except at the origin, and possibly the rays' termini, s
is strictly increasing along the rays:

Ãr � rs > 0, �6�

by the de®nitions of a minimum and the rays (ii).
Choose a value s1 of s between that at the minimum
and the least of those at the rays' termini. Let S be the
set of points with s � s1 passed through by the rays.

Each ray intersects S exactly once, and since s pos-
sesses at least two continuous spatial derivatives, S is
closed and smooth enough to have a well-de®ned unit

outward normal, Ãn: No ray is tangent to S, since then
the ray should have terminated, by (ii); thus,

Ãr � Ãn > 0: �7�

Now, by de®nition of the vector triple product,

Ãr� � Ãn� rs� � �Ãr � rs� Ãnÿ �Ãr � Ãn�rs, �8�

but Ãn� rs � 0, since the normal of a level surface is
parallel to the gradient; therefore,

Ãn � �A � rs� � �Ãr � Ãn�
�Ãr � rs�rs � �A � rs� > 0 �9�

by Eqs. (6), (7) and since A is positive. Thus, the
inward di�usive ¯ux is positive over the entire surface.

Integrate the steady-state advection±di�usion
equation (1) over the volume V enclosed by S:

� � �
V

r �
"
ÿ A � rs�

XN
i�1

h�i��s�v�i�
#

dV: �10�

Applying the divergence theorem gives:

XN
i�1

� �
S

Ãn � h�i��s�v�i� dS �
� �

S

Ãn � A � rs dS, �11�

of which the right-hand side is positive by Eq. (9). The

left-hand side, however, vanishes;� �
S

Ãn � h�i��s�v�i� dS � h�i��s1 �
� �

S

Ãn � v�i� dS �12�

� h�i��s1 �
� � �

V

r � v�i� dV � 0; �13�

by virtue of the hypotheses on the v�i �:
This is a contradiction, so the theorem is proved.

G.D. McBain / Int. J. Heat Mass Transfer 44 (2001) 863±865864



6. Notes

. The alternative proof may be summarized as fol-
lows. The existence of a strong local extremum

would imply the existence of a closed level surface
on which the normal component of the gradient,
and so the normal component of the di�usive ¯ux,
must be of a single sign. Thus, there would always

be a net di�usion through the surface, but the net
advection would vanish.

. The application to the multicomponent energy

equation is clear (cf. [3]). The variables s, A, h�i � and
v�i � are the temperature, (tensor) conductivity, par-
tial speci®c enthalpies and absolute species ¯uxes, re-

spectively. The required assumption is that the
partial speci®c enthalpies are independent of press-
ure and composition. The absolute species ¯uxes are

divergence-free because the species they represent
are conserved.

. For many common ¯uids, the di�usivity is isotropic;
i.e. a product of a (positive) scalar ®eld and the

Kronecker delta; and so is symmetric and positive
de®nite, as required.

. In the special case v�i � � 0 and Aij � Adij, where A is

a constant, the steady-state advection±di�usion
equation (1) reduces to Laplace's equation, for
which the corresponding result is classical [4].

. The di�usivity and velocities can depend on s, so
that the equation is only quasilinear. In the proof, s
is assumed to be given, so that A and the v�i � can be
re-expressed as functions of position.

. Completely analogous theorems hold in one and
two dimensions.

. One can conclude that the minimum temperature

apparent in the two-dimensional numerical solutions
of Weaver and Viskanta [5,6], and attributed to
interdi�usion (the advection of enthalpy by the dif-

fusive ¯ux of multiple species), was erroneous. The
source of the error is the inconsistent treatment of
whether the mixture enthalpy did or did not depend

on the composition. The sine qua non of interdi�u-
sion is the di�erence in speci®c heat capacities of the
di�erent species, and interdi�usion only arises from
a (frequently convenient) repartitioning of the

enthalpy ¯uxes due to the N species ¯uxes into a
bulk advective ¯ux and Nÿ 1 interdi�usion ¯uxes.
It is essential, therefore, to treat the mixture

enthalpy or speci®c heat capacity, consistently in the
bulk advection and interdi�usion terms. A concise
consistent derivation of the energy equation for a

binary mixture may be found in Ref. [7]; a lengthier

discussion has been given elsewhere [8].
. Extrema might occur if there were source or sink

terms in the equations, such as, for the case of the
energy equation when the scalar is temperature, one
or more of the components changed phase in the

domain; the Dufour e�ect was appreciable; or there
were viscous heating.

. Extrema are, of course, possible in transient advec-

tion±di�usion, as, for example, they may be speci-
®ed in the initial conditions. An interesting but as
yet (to my knowledge) unanswered question is

whether strong local extrema can arise in the evol-
ution of a scalar ®eld; this was predicted in the two-
dimensional numerical solutions of Bergman and
Hyun [9] for the mass fraction of tin in a non-

isothermal amalgam with lead.
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